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SUMMARY

This paper presents two techniques allowing local grid re�nement to calculate the transport of vor-
tices. The �rst one is the patched grid (PG) method which allows non-coincident interfaces between
blocks. Treatment of the non-coincident interfaces is given in detail. The second one is the adaptive
mesh re�nement (AMR) method which has been developed in order to create embedded sub-grids.
The e�ciency of these two methods is demonstrated by some validating tests. Then the PG and AMR
strategies are applied in the computation of the transport of vortices. We start with a simple vortex
�ow in a cubic box. Then, the �ow�eld around a complex aircraft con�guration is calculated using the
two re�nement techniques. Results are compared with a �ne, referenced grid calculation. Copyright ?
2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The rate of decay of airplane wake vortices represents one of the most important parame-
ters in the determination of the separation distance imposed between two successive aircrafts
in take-o� or landing con�guration. Indeed, it is important to ensure there is su�cient dis-
tance between aircraft, so to guarantee the following one will be able to traverse the wake
safety. Currently, all separation distances are based on aircraft weight and vary from 3 to 6
nautical miles. These rules introduce signi�cant constraints that have already lead to some
airports becoming saturated. The evolution of air tra�c shows clearly that this situation will
be generalized to many other airports in the near future.
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The study of wake vortices allows us to understand their behaviour and consequently explore
the means by which to reduce their hazards. This alternative will be bene�cial since it will
allow us to establish new rules, which are less constraining, for the separation distances
between airplanes. By adopting these rules, airport’s capacity can be increased.
The analysis of wake vortices by solving the whole �ow around the airplane is the

most accurate numerical strategy. However, it needs huge grids, especially when we want
to follow vortices many wingspans behind the aircraft. In order to reduce the size of
the grids (and consequently the cost of computations), some numerical strategies have
been developed. In this paper we will present and test two of these strategies: the
patched grid (PG) and the adaptive mesh re�nement (AMR) techniques. Since the present
study is our �rst work in which we try to couple the physics of wake vortices and
meshing strategies, we choose to restrict our attention to inviscid �ow. This hypothesis is
well justi�ed since we consider only near �eld wake. Indeed, previous studies [1] have
shown that a non-viscous approach gives satisfactory results in the near �eld wake: the
physics of the roll-up phenomenon is dominated by inviscid e�ects. Turbulent e�ects start
to in�uence the dynamics of the wake after several wingspans downstream of the
plane.
We start this paper by giving some indications about the governing equations and the �ow

solver. Then we present independently the theory of PG and AMR strategies. In order to val-
idate the two techniques, we perform some numerical tests in the third section. In these tests
we show the e�ect of meshing strategies on di�erent con�gurations. After that, we apply PG
and AMR to the study of wake vortices, which represent the physical topic of this paper. In
this section, we use two di�erent con�gurations. The �rst one is devoted to the transport of a
vortex in a cubic box. This preliminary test is very important, since it allows us to quantify the
performance of the PG and AMR strategies (comparison with analytical solution). The second
con�guration corresponds to a generic aircraft model. We try to follow wake vortices up to 6.5
wingspans downstream of the wing trailing edge. We perform three computations. The �rst one
is based on the use of a �ne grid and is considered as a reference. In the second (resp. third)
we use the PG (resp. AMR) strategy. A detailed comparison is performed between the three
computations. Of course, we end the present study by some concluding remarks, in which we
show clearly the great in�uence of meshing strategies on accurate and e�cient wake vortices
computations.

2. GOVERNING EQUATIONS AND FLOW SOLVER

2.1. Euler equations

The governing equations are the unsteady Euler equations which describe the conservation of
mass, momentum and energy of an inviscid �ow �eld. Using Cartesian co-ordinates (x; y; z),
these equations can be expressed in a conservative form as follows:

@W
@t
+

@f
@x
+

@g
@y
+

@h
@z
=0 (1)
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The state vector W and the inviscid �uxes f; g and h are given by:
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(2)

where � is the density, u; v and w are the Cartesian components of velocity, p is the pressure
and E is the total energy. As the system (1) contains six unknowns (�; u; v; w; E; p) for only
�ve equations, it is necessary to add another equation (a state equation). For a caloric perfect
gas, this equation is given by

p=�RT (3)

where R is the gas constant equal to 287 (J=kg K) for air. The temperature T is then de�ned
as a function of the conserved variables.

2.2. Flow solver

The NSMB (Navier–Stokes multi-block) code is used in this study. This code has been jointly
developed by EADS France S.A., CERFACS. EPFL, KTH and Saab [2]. The NSMB code
solves the compressible Navier–Stokes equations using a �nite-volume method with various
spatial discretization schemes like Jameson’s central di�erence scheme [3], Roe’s scheme [4],
AUSM+ scheme [5] or HLLE [6]. In order to conserve high gradients in vortices during
advection downstream, it is necessary to use a fourth-order central space discretization [7].
Time integration is based on the full matrix implicit method LU-SGS (lower-upper symmetric
Gauss–Seidel) [8]. The NSMB has been parallelized using message passing communication
MP1.

3. MESHING STRATEGIES

3.1. Patched grid algorithm

The use of domain decomposition techniques has become widespread for complex con�gura-
tions. The decomposition into multiblock structured meshes facilitates the attainment of the
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desired distribution of the mesh points and reduces the memory required for the numerical
solver. It also allows an e�cient use of parallel computers. The structured numerical solver is
less CPU time consuming thanks to the vectorization of the algorithm. Furthermore, structured
meshes simplify the calculation of gradients. These advantages allow the multi-block struc-
tured code to deal with very large industrial con�gurations. As such, it can be used as a tool
for an industrial design platform. However the structured grid requires common interfaces be-
tween blocks which imposes constraints on the grid generation. Consequently mesh re�nement
in regions where gradients are strong propagate to the far�eld boundaries. It makes the grid
generation for complex con�gurations more di�cult when clustering grid nodes in regions
where the gradients are expected to be high. To avoid this disadvantage of the structured
grids, the PG approach has been studied. With the PG approach, blocks must have common
interfaces but do not need the same location of grid nodes. The �exibility of this kind of
mesh allows mesh re�nement and makes it easier to cluster grid points. In conservative form,
the Navier–Stokes equation can be expressed in generalized co-ordinates ( ; �; �) as

@Û
@t
+

@(F̂ − F̂v)
@ 

+
@(Ĝ − Ĝv)

@�
+

@(Ĥ − Ĥv)
@�

=0 (4)

At the interface between �nite-volume cells, the numerical �uxes can be expressed as a
combination of an inviscid and a viscous part as

F̂i+1=2 = (F̂e − F̂v)i+1=2 (5)

One of the most important properties of a PG algorithm for transonic �ow is to maintain
conservation of the numerical scheme. Benek et al. [9] have illustrated the loss of accuracy
when non-conservative interfaces are used. Their transonic bi-dimensional �ow calculations
of an airfoil with a smaller embedded grid around a �ap, show a very distorted computed
shock when the shock passes through the grid interface. This phenomenon is well known,
since the numerical computation of a discontinuous solution requires a numerical scheme in
conservation form. Ra�� [10] has proposed a conservative PG algorithm for the Euler equations.
His method ensures conservation for a PG having a common cell centre line at the interface.
The governing equations are integrated in each block in conjunction with a zonal boundary
scheme which allows proper information transfer across grid interfaces. This method could be
viewed as a particular case of the �ux interpolation method of Berger [11].
Lerat and Wu [12] have developed a PG algorithm which is conservative and uncondition-

ally stable’for dissipative di�erence schemes. The block interface treatment does not use �ux
interpolation in contrast to Ra��’s method. It consists of computing the numerical �ux for each
interface divided segment and summing them to get the total numerical �ux for each cell
face at the PG interfaces. Furthermore, this method is linearly equivalent to an area-weighted
interpolation of the state vector.
The method which is described in this paper uses the splitting and dividing method of the

numerical �uxes as described by Lerat and Wu [12]. We have chosen to extend this method
to Jameson’s centred scheme and to Ducros’s centred scheme for the Euler equations. For
the implicit LU-SGS algorithm, �ctitious cells at interfaces are �lled at each sweep with an
area-weighted interpolation of the state vector. These interpolations permit the robustness and
the e�ciency of the LU-SGS implicit algorithm to be kept.
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Figure 1. Patched grid.

Let us discuss in detail an interface condition for a two-dimensional PG illustrated in
Figure 1. Blocks 1 and 2 have a common boundary line of nodes. The indices (i; j) refer to
the cell-centre locations of block 1, and the indices (l; m) refer to the cell-centre locations
of block 2. We assume that the interface is located at index i= 1

2 for block 1, and at index
l= 1

2 for block 2. To simplify the understanding of the algorithm detailed here, we assume
that there is no overlap or gap between cells at the block interface. We also suppose that
surface vectors of the cell’s face located at the block interfaces are collinear. For the gen-
eral PG case, we rede�ne cell volume and surface vector as has been clearly explained in
Reference [13].
De�ning the spatial numerical �ux F̂ in the (�; �) generalized co-ordinates, the global con-

servation can be maintained by enforcing spatial �ux conservation along the PG
interfaces as

∫
F̂ [1](�=1=2; �) d�=

∫
F̂ [2](�=1=2; �) d� (6)

The equality (6) can be written in discretized form like

F̂ [1]
1=2; j=(�1F̂

[2]
1=2; m−1 + �2F̂

[2]
1=2; m) (7)

with �j the area-weighted coe�cient. We denote by A(1=2;j) the surface area de�ning the cell
face ( 12 ; j), and A(1=2; m); A(1=2; m−1) the surface areas de�ning the cell faces ( 12 ; m) and (

1
2 ; m−1),

respectively. The factor �1 is the coe�cient related to the intersection area between geometric
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surfaces A(1=2; j) and A(1=2; m−1) normalized with the area of A(1=2; j).

�1 =
∫
A(1=2; j)

⋂
A(1=2; m−1) dS∫

A(1=2; j) dS

Let us discuss the inviscid treatment for the second-order scheme of Jameson and the
fourth-order scheme of Ducros.

3.1.1. Inviscid �ux treatment. In this section, the treatment of the block interfaces without
coincident points is described for the Jameson second-order centred scheme and the Ducros
fourth-order scheme. For these two schemes, the arti�cial dissipation �uxes are treated sim-
ilarly. Just the derivative terms need a particular treatment for the two di�erent schemes.
Then we just describe the treatment of the di�usive term in the Jameson’s central scheme
part.
Second-order Jameson’s central scheme: Let us detail Jameson’s numerical �ux at the PG

interface illustrated in Figure 1. The incoming numerical �uxes at the interface of block 2 is
given by

F̂ [2]
1=2; m−1 = F̂

(
U [2]
1; m−1 +U int

m−1
2

; s1=2; m−1

)
− d[2]1=2; m−1

F̂ [2]
1=2; m = F̂

(
U [2]
1; m +U int

m

2
; s1=2; m

)
− d[2]1=2; m

(8)

The numerical �ux of block 1 at the PG interface can be expressed like

F̂ [1]
1=2; j= F̂

(
U [1]
1; j +U int

j

2
; s1=2; j

)
− d[1]1=2; j (9)

with U int the state vector at the cell face. To ensure the conservation of the scheme, we have to
satisfy Equation (7) between the numerical �uxes at the cell faces of the non-coincident inter-
face. It means to consider independently Jameson’s dissipative term and the central derivative
term

F̂

(
U [1]
1; j +U int

j

2
; s1=2; j

)
= �1F̂

(
U [2]
1; m−1 +U int

m−1
2

; s1=2; m−1

)

+ �2F̂

(
U [2]
1; m +U int

m

2
; s1=2; m

)

d[1]1=2; j = �1d
[2]
1=2; m + �2d

[2]
1=2; m−1 (10)

If we assume that the surface vectors at the cell face ( 12 ; j) of block 1 and at cell faces (
1
2 ; m)

and ( 12 ; m−1) are collinear, we can take the value of the state vector at the cell face to ensure
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the �rst equality of Equations (10) as

U int
m =U int

m−1 =U [1]
1; j (11)

For Jameson’s dissipative term, the �ux at the cell face ( 12 ; j) can be split into two elementary
�uxes for cell faces ( 12 ; m) and (

1
2 ; m− 1) as

d[2]1=2; m−1 = �(2)1=2; m−1(U1; m−1 −U1; j)

− �(4)1=2; m−1(U2; m−1 − 3U1; m−1 + 3U1; j −U2; j) (12)

d[2]1=2; m = �(2)1=2; m(U1; m −U1; j)

− �(4)1=2; m(U2; m − 3U1; m + 3U1; j −U2; j)

with the scaling factor in ( 12 ; m) and (
1
2 ; m − 1) evaluated at the cell centre using the mean

surface vector 1
2 (s

→
1=2; m − s→3=2; j) and

1
2 (s

→
1=2; m−1 − s→3=2; j), respectively. The pressure sensor is

evaluated at the cell face using the normalized second-order di�erence of the pressure (for
example at cell face ( 12 ; m) such as

 1; m=
∣∣∣∣p2; m − 2p1; m + p1; j
p2; m + 2p1; m + p1; j

∣∣∣∣ (13)

 0; m=
∣∣∣∣p1; m − 2p1; j + p2; j
p1; m + 2p1; j + p2; j

∣∣∣∣ (14)

The sensor is then taken in ( 12 ; m) as

�1=2; m= max( 0; m;  1; m) (15)

Furthermore, when performing Navier–Stokes simulations, the arti�cial viscosity is usually
damped in the boundary layer. We have to treat the damping function at PG interfaces to
maintain the conservativity. The damping function must have the same value at each side of
the interfaces.
With this conservative treatment of the inviscid part of the numerical �uxes, we can compute

transonic �ow. However, it is well known that re�nement induces oscillations. Jameson’s
dissipative term of the central scheme can reduce these oscillations and stabilize the numerical
scheme even with a high volume ratio between adjacent cells. This means that, we have
obtained a robust and e�cient algorithm to compute transonic �ow with non-coincident grids.
Fourth-order Ducros’s scheme: Improvements due to this fourth-order scheme have been

con�rmed for the estimation of wake vortices [7]. This scheme is widely used to compute
wake vortices and is used in this paper for the vortex studies. The PG algorithm extends to
this high-order central scheme without any di�culties.
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The skew symmetric form of the Ducros’s scheme can be expressed at the cell’s interfaces
( 12 ; j), as

F̂ [1]1=2; j= F̂(U int′
j ; U int

j ; U1; j ; U2; j) (16)

To ensure conservation of the numerical �uxes, we split the �uxes in two elementary �uxes
associated with the adjacent cells

F̂ [1]
1=2; j=(�1F̂

[2]
1=2; m−1 + �2F̂

[2]
1=2; m) (17)

with �i the area-weight coe�cient. These elementary �uxes are then expressed in this form

F̂ [2]
1=2; m = F̂(U−1; j ; U0; j ; U1; m; U2; m)

F̂ [2]
1=2; m−1 = F̂(U−1; j ; U0; j ; U1; m−1; U2; m−1)

(18)

This treatment keeps the conservation of the scheme even at non-coincident interfaces.

3.2. Adaptive mesh re�nement

Despite constant advances realized by both numerical schemes and computers, improving the
accuracy and decreasing the computational costs are still two major objectives of the CFD. The
use of global mesh re�nement for structured grids requires an unnecessary large number of
nodes, which results in an increase of computational work and storage. Local grid re�nement
methods allow computational CPU savings for transonic steady �ows using local multigrid
type strategies. Following the pioneering work of Berger [14], Colella [15] and Quirk [16],
an AMR method is presented, associated to the NSMB solver. In a previous paper [17], 2D
steady �ows have already been considered for the Euler equations. Here, the purpose is to
apply the same method for a 3D complex computation. We hope to capture wake vorticies
with a high degree of precision.

3.2.1. Hierarchical grid structure. The AMR algorithm consists of a sequence of integration
on di�erent grid levels (06l6lmax). A grid Gl is required to be a union of sub-blocks in
which the same discretization procedure is applied: Gl= ∪k Gl; k where Gl; k are elementary
sub-blocks. The hierarchical grid structure respects the ‘properly nested property’ which is
based on the three following rules: (1) ∀l 16l6lmax; Gl ⊂Gl−1: inclusion of underlying
grids; (2) Gl; k ∩Gl;h= ∅ if k �= h: no overlapping; (3) adjacent cells of Gl must only belong
to the level 1-1, except for external or wall boundaries. In the case of the NSMB solver, for
programming facilities, we do not authorize overlapping at di�erent grid levels; (4) a �ne
elementary mesh must be contained in only one coarser elementary mesh. Finally, the grid
hierarchy is generated by a factor 2 sub-division of selected cells: a coarse cell becomes eight
�ne cells.

3.2.2. Grid cycling. For steady �ows, various options of cycles are possible as in multigrid
strategies. For the present case, we apply two sequences: The �rst stage consists in integrating
all the sub-blocks at the same time. This strategy of integration is aimed at achieving good
parallel performance. The second stage is essential for making a coupling between grid levels:
on each level; a composite residual is constructed. By this way, the coarse grids are corrected.
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3.2.3. Coarse grid correction—composite residual. To ensure transfers of information from
�ne grids to coarse grids, we employ locally a forcing function, as in multigrid strategies [8].
This type of communication is essential for two reasons. The �rst one is to obtain a more
accurate coarse grid solution for the interpolation of dummy cells at �ne-coarse boundaries.
The second reason is connected with the adaption process. In fact, while �ne grids capture
�ne structures, this information is required on the coarse grids in order to keep, and eventually
to increase, the re�nement there. On the re�ned level lmax, equations are discretized with an
implicit phase which can be cast into the following compact formulation:

Almax�Un+1
lmax = − �t

|�| R(U
n
lmax) (19)

where �Un+1
lmax =Un+1

lmax−Un
lmax is the time solution increment and R(Un

lmax) is the residual. After
the �rst stage, local �ow solution Ulmax and residual R(Ulmax) are collected and recursively
transferred down to coarser grid using a conservation preserving operator T :

∀l 16l6lmax−1 (20)

Al�Un+1
l =−�t

|�| R
comp
l (21)

�Un+1
l =Un+1

l −U comp
l (22)

where Rcompl and U comp
l are de�ned as follows:

Rcompl =

{
Rl(Un

l ) for non-re�ned cells

TRcompl+1 for re�ned cells

U comp
l =

{
Un

l for non-re�ned cells

TU comp
l+1 for re�ned cells

The main advantage of this coupling lies in its conservation preserving property and its
independance in terms of the solver, which is a great advantage in a big CFD code such as
NSMB.

3.2.4. Automatic grid adaption=GAME process. The keystone of AMR is provided by its
e�ciency to generate automatically re�ned zones over regions of interest (discontinuities,
boundary layers, large truncation errors, ..., etc). In the NSMB context, each level of re-
�nement is generated by GAME. GAME is a subdivision process based on several monitor
functions called sensors. These sensors lead to thresholds which have to be tuned. Afterwards,
the �agged cells are grouped into a patch of sub-grids using a grouping=clustering algorithm
[16]. In the present method, a vortex-sensor is used to detect wake vorticies. In the case of
NSMB, the grid adaption process (GAME) is not directly coupled with the integration process
(NSMB code). After a �rst stage of integration (converged computation), on the most coarse
grid, a primary level of re�nement is built with the help of GAME. Then, a second computa-
tion is realized with the �rst level and so forth, the hierarchical grid structure is progressively
generated. The user decides the number of re�nement levels.
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4. NUMERICAL VALIDATION

4.1. Patched grid technique validation

To assess the accuracy of solutions calculated when using the PG algorithm presented in this
paper, we have evaluated a transonic test case. Comparisons between the solution obtained
with a non-coincident grid and with a similar coincident grid were made.
NACA0012—Inviscid transonic �ow: This test case involves inviscid transonic �ow past an

NACA0012 airfoil, with free-stream. Mach number M∞=0:85 and an angle of attack �=1◦.
This test case has been chosen for its sensitivity to the accuracy of the numerical treatment. In
each case, we use the LU-SGS implicit matrix method. We use the Jameson central scheme
with the dissipation coe�cients k(2) = 0:5 and k(4) = 0:04. For this test case, a rather strong
shock occurs on the upper side and a weaker shock on the lower side of the airfoil. We have
made two computations on two di�erent meshes. The �rst one is a coincident grid which
has 12 blocks and 14300 nodes. The topology contains C blocks around the airfoil and H
blocks in the other regions. The PG is obtained with un-enrichment of the H block and with
some re�nements in several blocks belonging to the C topology. A block is partially re�ned
in the supersonic region, and is re�ned in two directions in the shock region (cf. Figure 2).
A PG interface is aligned with the strong shock on the upper side of the airfoil. This PG
contains 10 500 nodes. In Figure 3, the pressure coe�cient distributions on the airfoil show
that the PG interface treatment predicts a correct shock location even with a patched inter-
face aligned with the strong shock. This calculation assesses the conservative implementation
of the PG algorithm for inviscid �ow. Figure 2 shows the Mach isolines on the PG and
Figure 3 the convergence histories for the coincident grid and the PG. The convergence his-
tories are quite similar for the two calculations and demonstrates the stability characteristics
of the PG algorithm.

4.2. Adaptive mesh re�nement technique validation

The AS28G wing con�guration generated at EADS Airbus SA represents a 3D test-case. This
inviscid �ow corresponds to cruise conditions with a free stream Mach number M∞=0:8, an

Figure 2. NACA0012 airfoil patched grid, Mach isolines M∞=0:85; �=1◦.
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Figure 3. Cp on NACA0012 M∞=0:73; �=1◦—Convergence histories.

Figure 4. Convergence histories.

angle of attack �=2:2◦. Two di�erent meshes are considered for this computation. The �rst
one is a globally re�ned mesh who contains 1 626 690 nodes. The second one is a composite
mesh, containing 502 084 nodes, with two levels of twice re�ned grids. The most �ne grid
(level 2) has the same density as the globally re�ned mesh. In fact, the initial coarse grid is
obtained by removing four nodes in all the directions from the �rst mesh.
The LU-SGS scalar method is applied to this computation. Jameson’s dissipation coe�cients

are set at k(2) = 0:5 and k(4) = 0:02. From the convergence histories (Figure 4), we can see
that AMR leads to signi�cant improvements both in terms of number of time steps to reach
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Figure 5. Cp stations (y = 5 and 13)—M∞ = 0:8; � = 2:2:◦

a convergence level (3 times less), and in terms of CPU time to carry out the computation
on a VPP700 (6 times less). Moreover, the number of nodes is divided by a factor 3.
In Plates 1–3, the Mach number contours of the composite solution are plotted on the

wing’s skin. The shock continues to be captured better as the grid is re�ned.
The pressure coe�cient distributions plotted in Figure 5 present another comparison between

AMR and globally re�ned results. It shows some small discrepancies due to the very strong
in�uence of the �ne-coarse boundary conditions. Nevertheless, the shock locations are the
same for the two cases. In conclusion, we have nearly the same precision.

5. APPLICATION TO VORTEX CALCULATION

5.1. Vortex transport

In order to evaluate the performance of the two meshing strategies (PG and AMR) in the
computation of wake vortices, we start with a simple vortex �ow. We impose a particular
boundary condition at the inlet of a cubic box. This condition is characterized by a Lamb–
Oseen vortex, de�ned by the following equation:

V (r; t) = 1:40Vm(r=rc)−1[1− e−1:25(r=rc)2 ] (23)

where Vm is the maximum value of the tangential velocity and rc is the core radius, r indicates
the radial position from the centre of the vortex. Using the NSMB code, we try to transport
the vortex across to the outlet boundary by imposing a constant inlet axial velocity.
Three computations are performed. In the �rst one, we use a ‘�ne’ grid. This computation

is considered as the reference of comparison. The second (resp. the third) simulation is based
on the use of PG (resp. AMR) strategy.
Figure 6 shows the inlet boundary plane of the di�erent grids. We observe that all the grids

have the same re�nement level in the central zone, which is the region where the vortex is
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Figure 6. Comparison of inlet planes.

Figure 7. Velocity �eld in the inlet plane.

Table 1. Mesh size for each computation.

Mesh size (points)

Fine 2:5× 106
PG 1:5× 106
AMR 1:4× 106

localized (see Figure 7). Outside this region both the patched and AMR grids are coarser
than the reference grid. The level of re�nement shown in Figure 6 is maintained up to the
outlet plane, in order to capture the vortex well along the entire length of the box. Table I
shows the size of grids.
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Figure 8. Comparison of velocity pro�les—relative error of the velocity in
comparison with uniform �ne grid computation.

Figure 8 allows us to compare velocity pro�les plotted at the outlet plane with the theoretical
velocity pro�le (inlet �ow) represented by a solid line. In this �gure, it is clear that the
numerical dissipation related to the used space discretization scheme, leads to a decrease of
the maximum value of the tangential velocity. However, the conservative property of NSMB
code causes the increase of the core radius, so we have the same total circulation in any plane
which is perpendicular to the vortex axis. This problem is well known in the computation
of compressible �ows. In the present study, our goal is not to propose a solution for this
question, but to test meshing strategies in the computation of vortex �ows. Figure 8 shows
that both PG and AMR lead to a satisfactory result: the velocity pro�le is well transported,
if we compare it with that obtained using the �ne grid. This example shows clearly that it is
not necessary to have a �ne grid everywhere if we want to study a vortex �ow. It is su�cient
to re�ne only the zone traversed by the core of the vortex in order to compute the �ow well.
In order to have a more accurate idea about the accuracy of the results, relative error curves

are plotted. Figure 8 is obtained by taking the �ne grid result as reference to compute relative
errors. As we can see, the di�erence between PG and �ne grid does not go above 2.5%. The
situation is slightly di�erent for the AMR. In the core region, AMR leads to a very good
results (the relative error is about 1.25% at maximum). However, out of the core region the
di�erence is signi�cant.

5.2. Aircraft model

As was speci�ed in the introduction, we will try to use the techniques, which described in
Section 3, in the computation of an aircraft wake vortices. The airplane model used in this
study is presented in Figure 9. This model is essentially characterized by wings (NACA-4412)
at zero angle of incidence and 2

3 span �aps (NACA-0012, �ap setting 20
◦). Note that the

fuselage is extended until the end of the computational domain to avoid any generation of
secondary vortices. The length of the domain downstream of the trailing edge, Lw, is 6.5
wingspans. It is important to point out that this airplane is a generic aircraft model, which
was used in the European project C-Wake.
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Figure 9. A general view of the grid near the surface of the airplane model.

Figure 10. A perspective view of the grid at wing and �ap tips.

The symmetry of the model, the inviscid property of the �ow to be computed and the
assumption that vortices are interacting symmetrically, allows us to use grids that correspond
only to one half of the model (see Figure 9 which represents the �ne grid). Figure 10 shows
the grid at wing and �ap tips. It also allows to see the starting of streamlines which represent
the wake vorticies.

5.2.1. Results and discussion. We performed three computations on the VPP700 of m	et	eo
France. The �rst one corresponds to the �ne grid. It is considered as the reference case.
In the second (resp. third) computation we use the PG (resp. AMR) technique. All these
computations were performed for the value of the angle of attack: A ◦ A = 4◦ and the free-
stream Mach number: M = 0:176. Note that we use the free-stream velocity U0 and the
wingspan b as velocity and length scales, respectively.
The strategy used in both the PG and AMR computations consists of using an initial coarse

grid obtained from the �ne one by dividing the number of points by two in each spatial
direction. In the PG computation we re�ne the blocks of the coarse grid which are crossed
by wake vortices. However, in the AMR calculation we perform a more local re�nement by
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Figure 11. The top view of streamlines in wake vortices. Result obtained using the �ne grid, PG
and AMR strategies (from top to bottom).

selecting only the parts of these blocks traversed by the vortices (Game process). For this,
we use a sensord based on the evaluation of the total pressure gradient. The comparison of
Plates 4–6 allow us to have a general idea about the di�erent grids. As we can see on the
visualized planes, the re�nement of the AMR grid is the most local. The di�erence between
the �ne grid and the Patched one can be seen on the fuselage.
Streamline views: We can carry out a qualitative comparison between the di�erent compu-

tations by visualizing streamlines in the wake vortices. As we can see in Figure 11 showing
the top view of the wake, the evolution of vortices resulting from the use of the PG tech-
nique seems to be similar to the reference case. However the AMR result is slightly di�erent.
Indeed, the interaction between the two vortices starts later in the AMR computation.

5.2.2. Quantitative analysis of results. Now we focus our attention on the analysis of a plane
situated in the wake zone where we have observed a di�erence between results. Let us �x
the position of this plane at 5.2 wingspans downstream of the wing trailing edge.

Velocity pro�les: In this section we compare velocity pro�les through wing and �ap vor-
tices. This alternative allows us to compare the core radius (rc) and the maximum velocity
(Vm) for each vortex. As we can see in Figures 12, we plot the vertical component of velocity
w versus the spanwise position y. In these �gures yci, where i=f for the �ap and i=w for
the wing, indicates the spanwise position of the vortex centre.
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Plate 1. Level 0—mesh and Mach number contournf—M∞ = 0:8; � = 2:2◦.

Plate 2. Level 1—mesh and Mach number contours—M∞ = 0:8; � = 2:2◦.

Plate 3. Level 2—mesh and Mach number contours—M∞ = 0:8; � = 2:2◦.
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Plate 4. Grid and total pressure in a plane situated at x=b = 2:9 downstream of the wing
trailing edge. Result obtained using the �ne grid.

Plate 5. Grid and total pressure in a plane situated at x=b = 2:9 downstream of the wing
trailing edge. Result obtained using the PG strategy.

Plate 6. Grid and total pressure in a plane situated at x=b = 2:9 downstream of the wing
trailing edge. Result obtained using the AMR strategy.
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Figure 12. Vertical velocity pro�le through the wing vortex in a plane situated at 5.2
wingspans downstream of the wing trailing edge—vertical velocity pro�le through the �ap

vortex in a plane situated at 5.2 wingspans downstream of the wing trailing edge.

Figure 13. Grid for the reference computation—�ne grid—patched grid—AMR grid.

The PG computation gives satisfactory results. For the wing vortex, rc and Vm are very
close to the reference results. The situation is slightly di�erent for the �ap vortex. Although
the vortex has the same size (i.e. the same core radius), the maximum velocity is smaller if
we compare it with the reference case.
The result obtained using the AMR technique is relatively di�erent if we compare it to

the other computations. For the two vortices, both rc and Vm are smaller. This result explains
in some manner the di�erence which we observe when we compared streamline views. But,
what is the origin of this non-satisfactory result?
It is certainly due to the local characteristic of AMR technique. In other words, the re�ned

part used in AMR computation is not su�cient to capture all the dynamics of vortices. This
argument is well justi�ed by Figure 13 which shows the position of vortices on the di�erent
grids in the selected plane. If the vortex is well surrounded by a re�ned zone it’s dynamics
are well captured. This is the case for wing vortex in the PG computation. The comparison
of the grids in Figure 13 allows us to explain not only the AMR results but the PG results
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Figure 14. Convergence plots for residual (L2 norm).

Table 2. CPU time and mesh size for each computation.

CPU time(h) Mesh size (points)

Fine 53.75 4:3× 106
PG 23.33 2× 106
AMR 13.94 1:4× 106

too. Indeed, on this last grid (PG) the �ap vortex is situated not very far from the extremity
of the re�ned zone. This explains the di�erences which we observe in Figure 12.
Comparison of computations characteristics: In order to estimate well the bene�t realized

using the PG and AMR strategies, it is necessary to compare CPU times and mesh sizes.
As we can see in Figure 14, the adopted strategy consists of doing the necessary number
of iterations until arriving at a pre-�xed value of the residual (5× 10−6). The AMR strategy
seems to be the most advantageous in terms of CPU time, since it converges quicker than the
PG technique. In Table II, we can notice the remarkable di�erence between the calculations.
Using mesh re�nement strategies allows us to reduce mesh size and consequently the CPU
time (between the reference case and AMR computation (resp. PG computation), there is a
ratio of 3.85 (resp. 2.3)).

6. CONCLUSION

PG and AMR strategies have been presented for 3D steady inviscid �ows. The two techniques
have shown their ability to increase locally the number of nodes. They are well suited to wake
vortices computations. However, for these kind of �ows, it is not su�cient to re�ne locally
the characteristic structures. Wake vortices calculations need a large encapsulation to avoid
the merging of the vortices.
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The AMR strategy is encouraging thanks to the CPU performance but the re�nement is
too local. We expect to de�ne a more sophisticated sensor in order to re�ne more widely the
vortices. A good solution could be to work with sensors based on an estimation of second
derivatives.
For these kind of �ows, the PG strategy is well adapted: we keep the same precision by

diminishing the number of nodes.
In the future, we will combine these two strategies to use the advantages of both methods.
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